

Distributed Moving Horizon Estimation with pre-estimation using Extended Kalman Filter for Nonlinear Measurements

Matthieu Borelle

Supervisors University Paris-Saclay: Cristina Stoica, Sylvain Bertrand International collaboration: Teodoro Alamo, Eduardo F. Camacho

CT CPNL - November 16th, 2023

312

Inti	rodu	ction	
oc	000		

Overview

1 Introduction

- 2 Distributed State Estimation for cooperative localization
- 3 DMHE approach for cooperative localization
- **4** Simulation results
- 6 Conclusion

Image: A image: A

EL OQO

Context and applications

Distributed State Estimation (DSE)

- Each agent/node (limited sensing, computation and communication capabilities):
 - Sharing information obtained by its embedded sensors within its neighborhood
 - 2 Computing a local state estimate by fusing information (consensus)
- Providing increased autonomy, scalability, computational efficiency, fault-tolerance, etc.
- Applications: multi-vehicle localization, surveillance or tracking missions by sensor networks.

Fig. 1: Communication graph representing the network between nodes/agents $% \left({{{\mathbf{F}}_{{\mathbf{F}}}}_{{\mathbf{F}}}} \right)$

Fig. 2: Envisaged application

Moving Horizon Estimation

Moving Horizon Estimation (MHE):

- optimal state observer approach (duality with MPC)
- computing a state estimate by minimizing a cost function involving a plant model and a finite sequence of past measurements.

EL OQO

Moving Horizon Estimation

Moving Horizon Estimation (MHE):

- optimal state observer approach (duality with MPC)
- computing a state estimate by minimizing a cost function involving a plant model and a finite sequence of past measurements.

Compared to classical DSE (e.g., Distributed Kalman Filter DKF / Distributed Extended Kalman Filter DEKF) Advantage:

Account for constraints and non-linearities in its formulation.

Drawback:

• Large computation time due to an online optimization

Image: A test in te

ELE DOG

Previous works on DMHE

- Distributed Moving Horizon Estimation approach:
 - Using neighborhood measurements, introducing different ways to fuse information, different consensus steps: consensus on the arrival cost [Farina et al. 2010], information-based consensus [Battistelli 2018].

 \rightarrow Ensuring stability of the estimation error dynamics, under the assumptions of network connectivity and collective observability [Battistelli 2018].

- Reducing the computation burden:
 - Using a DMHE with a "pre-estimation" strategy based on a Luenberger observer [Venturino et al. 2020]
 - \rightarrow Empowering real-time implementation on low-cost processors.
 - \rightarrow Considering linear systems with linear measurements.

Motivations and objectives

- Motivations:
 - Increasingly recurrent use of low-cost embedded sensors (e.g., lidar, ultra-wideband mounted on mobile robots) providing nonlinear measurements (e.g., angle and/or distance)
- Objectives:
 - \rightarrow Developing DMHE algorithms with pre-estimation able to handle **nonlinear measurements**.
 - \rightarrow Ensuring the feasibility of a real-time application of this approach on low-cost processors.

• • = •

ELE DOG

Motivations and objectives

- Motivations:
 - Increasingly recurrent use of low-cost embedded sensors (e.g., lidar, ultra-wideband mounted on mobile robots) providing nonlinear measurements (e.g., angle and/or distance)
- Objectives:
 - \rightarrow Developing DMHE algorithms with pre-estimation able to handle nonlinear measurements.
 - \rightarrow Ensuring the feasibility of a real-time application of this approach on low-cost processors.
- First application:
 - \rightarrow Collaborative localization of a fleet of UAVs

315

Image: A image: A

Sac

Distributed State Estimation for cooperative localization $\bullet \circ \circ \circ \circ$

DMHE approach for cooperative localization

Simulation results

Conclusion

MAS and communication modeling

 Considered Multi-Agent System (MAS): fleet of n_a UAVs, equipped with sensors, able to send and receive information through communication links with neighbors.

 $\mathcal{N}_a = \{1, 2, \dots, n_a\}$: set of all the agents (nodes). $\mathcal{E} \subseteq \mathcal{N}_a \times \mathcal{N}_a$: set of all edges, communication links between agents.

Fig. 4: Cooperative localization for a UAVs fleet

Remark 2.1

Information shared: either agent i measurements y^i provided by its embedded sensors, or its prior estimation of the entire MAS state $\hat{\mathbf{x}}^i$.

Assumption 1

Limited communication range \rightarrow only one-step ("one-hop") neighbors communication considered.

Communication network G = (N_a, E): undirected connected graph.

DMHE	approach	for	cooperative	localization	

Definition and notation

Fig. 5: Example of MAS communication network graph with 4 agents

For agent 1:

- Local information referring only to the local agent (e.g., x¹ its local state vector)
- Regional information referring to its one step neighborhood \mathcal{N}_a^1 (e.g., \bar{y}^1 its regional measurement)
- *Global* information considering the entire MAS (e.g., *x*, the global MAS state vector)
- DSE for cooperative localization: each UAV uses regional information to estimate the state (position and speed) of each UAV of the entire MAS.

▶ ▲ ∃ ▶ ∃ ∃ ≤ 𝔄 𝔄 𝔄

Distributed State Estimation for cooperative localization $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Dynamic modeling of the UAV and global MAS

Dynamics of each UAV $i \in \mathcal{N}_{a}$ of the MAS: discrete-time Linear Time-Invariant (LTI) model

$$x_{t+1}^i = A^i x_t^i + B^i u_t^i + B^i w_t^i$$

 x^i : state vector u^i : input vector w^i : input noise vector, zero mean noise of covariance Q^i

 A^i : evolution matrix B^i : input matrix

 $u^i + w^i$: available input vector (noisy acceleration measurement from Inertial Measurement Unit).

Dynamics of the global MAS

$$oldsymbol{x}_{t+1} = oldsymbol{A}oldsymbol{x}_t + oldsymbol{B}oldsymbol{w}_t \in \mathbb{R}^{n_{\!X}}$$

(2)

(1)

$$\begin{split} & \mathbf{x} = \operatorname{col}(x^1, x^2, \dots, x^{n_3}) = [(x^1)^\top, (x^2)^\top, \dots, (x^{n_3})^\top]^\top: \text{ collective (global) state} \\ & \mathbf{u} = \operatorname{col}(u^1, \dots, u^{n_3}): \text{ collective input} \\ & \mathbf{w} = \operatorname{col}(w^1, \dots, w^{n_3}): \text{ collective noise input} \\ & \mathbf{A} = \operatorname{diag}(A^1, \dots, A^{n_3}) \\ & \mathbf{B} = \operatorname{diag}(B^1, \dots, B^{n_3}) \end{split}$$

▲□▶ ▲□▶ ▲目▶ ▲目≯ ▲□▶ ▲□

Assumption and measurement model

• Restrained communication:

Each agent i does not communicate with the neighbors its available input vector $u^i + w^i$

 \rightarrow Inputs of other agents are seen as unknown inputs by the agent i observer

Global estimated input:

$$\hat{\boldsymbol{u}}^{i} = \operatorname{col}(0, \dots, u^{i} + w^{i}, \dots, 0) \in \mathbb{R}^{n_{u}}$$
(3)

Measurements locally performed by each agent i

$$y_t^i = h^i\left(oldsymbol{x}_t
ight) +
u_t^i, \hspace{0.2cm} i \in \mathcal{N}_{oldsymbol{a}}$$

with the output vector y^i and the measurement noise $\nu^i \in \mathcal{V}^i$ of covariance R^i .

• Regional measurements:

$$\bar{y}_t^i = \operatorname{col}\left(y_t^i, y_t^{j_1}, \dots, y_t^{j_{n_a^i}}\right), \ i \in \mathcal{N}_a \text{ and } [j_1, \dots, j_{n_a^i}] \in \mathcal{N}_a^i$$
(5)

Remark 2.2

Nonlinear dependence on the MAS state considered with the measurement function hⁱ.

(4)

Distributed State Estimation for cooperative localization $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Local optimization problem of standard DMHE

At time t, each agent $i \in N_a$ determines (based on regional information) its sequence of global MAS state estimate $[\hat{x}_{t-N}^i, \dots, \hat{x}_t^i]$ by solving:

N: estimation window length

Cost function

$$J_{N}^{i}(\cdot) = \sum_{k=t-N}^{t} \left\| \bar{y}_{k}^{i} - \bar{h}^{i}(\hat{x}_{k}^{i}) \right\|_{(\bar{R}_{i})^{-1}}^{2} + \sum_{k=t-N}^{t-1} \| \hat{x}_{k+1}^{i} - A\hat{x}_{k}^{i} - B\hat{u}_{k}^{i} \|_{Q^{-1}}^{2} + \Gamma_{t}^{i}(\cdot)$$
(8)

Local optimization problem of DMHE with EKF pre-estimation

At time t, each agent $i \in N_a$ determines (based on regional information) its global MAS state estimate $\hat{x}_{t-N|t}^i$ of x_{t-N}

DMHE with EKF pre-estimation constrained optimization problem $\begin{array}{l} \min_{\hat{x}_{t-N}^{i}} J_{N}^{i}(\cdot) & (9) \\ \\ \text{s.t.} \hat{x}_{k+1}^{i} = \hat{x}_{k+1|k}^{i} + \mathcal{K}_{k}^{i} \left(\bar{y}_{k+1}^{i} - \bar{h}^{i}(\hat{x}_{k+1|k}^{i}) \right), & (10) \\ \\ \hat{x}_{k+1|k}^{i} = \mathbf{A} \hat{x}_{k}^{i} + \mathbf{B} \hat{u}_{k}^{i} & (11) \\ \\ \hat{x}_{k}^{i} \in \mathcal{X}, \quad \bar{y}_{k+1}^{i} - \bar{h}^{i}(\hat{x}_{k+1}^{i}) \in \bar{\mathcal{V}}^{i}, & (12) \\ \\ \\ \forall k = t - N, \dots, t - 1. \end{array}$

Cost function

$$J_N^i(\cdot) = \sum_{k=t-N}^t \left\| \bar{y}_k^i - \bar{h}^i(\hat{x}_k^i) \right\|_{(\bar{R}^i)^{-1}}^2 + \Gamma_t^i(\cdot) \quad (13)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のの⊙

Local optimization problem of DMHE with EKF pre-estimation

At time t, each agent $i \in N_a$ determines (based on regional information) its global MAS state estimate $\hat{x}_{t-N|t}^i$ of x_{t-N}

DMHE with EKF pre-estimation constrained optimization problem $\begin{array}{l} \min_{\hat{x}_{t-N}^{i}} J_{N}^{i}(\cdot) & (9) \\ \text{s.t.} \hat{x}_{k+1}^{i} = \hat{x}_{k+1|k}^{i} + \mathcal{K}_{k}^{i} \left(\bar{y}_{k+1}^{i} - \bar{h}^{i}(\hat{x}_{k+1|k}^{i}) \right), & (10) \\ \hat{x}_{k+1|k}^{i} = \mathbf{A} \, \hat{x}_{k}^{i} + \mathbf{B} \, \hat{u}_{k}^{i} & (11) \\ \hat{x}_{k}^{i} \in \mathcal{X}, \quad \bar{y}_{k+1}^{i} - \bar{h}^{i}(\hat{x}_{k+1}^{i}) \in \bar{\mathcal{V}}^{i}, & (12) \\ \forall k = t - N, \dots, t - 1. \end{array}$ $\begin{array}{c} \text{Cost function} \\ J_{N}^{i}(\cdot) = \sum_{k=t-N}^{t} \left\| \bar{y}_{k}^{i} - \bar{h}^{i}(\hat{x}_{k}^{i}) \right\|_{(\bar{R}^{i})^{-1}}^{2} + \Gamma_{t}^{i}(\cdot) & (13) \end{array}$

- Using the pre-estimation observer \rightarrow reconstruct $[\hat{x}_{t-N}^{i}, \dots, \hat{x}_{t}^{i}]$ and keep \hat{x}_{t}^{i} .
- Compared to standard DMHE, less optimization variables \rightarrow reduced computation time [Venturino et al. 2021]

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のの⊙

Local optimization problem of DMHE with EKF pre-estimation

At time t, each agent $i \in \mathcal{N}_a$ determines (based on regional information) its global MAS state estimate $\hat{x}_{t-N|t}^i$ of x_{t-N}

DMHE with EKF pre-estimation constrained optimization problem $\begin{array}{l} \min_{\hat{x}_{t-N}^{i}} J_{N}^{i}(\cdot) & (9) \\ \text{s.t.} \hat{x}_{k+1}^{i} = \hat{x}_{k+1|k}^{i} + \mathcal{K}_{k}^{i} \left(\bar{y}_{k+1}^{i} - \bar{h}^{i}(\hat{x}_{k+1|k}^{i}) \right), & (10) \\ \hat{x}_{k+1|k}^{i} = \mathbf{A} \hat{x}_{k}^{i} + \mathbf{B} \hat{u}_{k}^{i} & (11) \\ \hat{x}_{k}^{i} \in \mathcal{X}, \quad \bar{y}_{k+1}^{i} - \bar{h}^{i}(\hat{x}_{k+1}^{i}) \in \bar{\mathcal{V}}^{i}, & (12) \\ \forall k = t - N, \dots, t - 1. \end{array}$

- Using the pre-estimation observer \rightarrow reconstruct $[\hat{x}^i_{t-N}, \dots, \hat{x}^i_t]$ and keep \hat{x}^i_t .
- Compared to standard DMHE, less optimization variables \rightarrow reduced computation time [Venturino et al. 2021]

HE approach for cooperative localization	Simulation results	C
•o · · ·		

L-step information consensus

Penalty function / arrival cost

$$\Gamma_t^i(.) = \|\hat{\mathbf{x}}_{t-N}^i - \bar{\mathbf{x}}_{t-N}^i\|_{(\tilde{\Pi}_{t-N}^i)^{-1}}^2$$
(14)

A priori state estimate and weight matrix obtained with a L-step consensus on information [Battistelli 2018]

Initialization:

- $\begin{aligned} P^{i}_{t-N,0} &= (\Pi^{i}_{t-N})^{-1} & (\text{information matrix}) \\ \xi^{i}_{t-N,0} &= P^{i}_{t-N,0} \hat{x}^{i}_{t-N|t-1} & (\text{information vector}) \end{aligned}$
- $\textcircled{0} \label{eq:product} \textbf{Consensus step: exchanging } P_{t-N,0}^i \text{ and } \xi_{t-N,0}^i \text{ with } neighbors then compute the weighted average.}$

$$P_{t-N,l+1}^{i} = k_{i,i}P_{t-N,l}^{i} + \sum_{j \in \mathcal{N}_{a}^{i}} k_{i,j}P_{t-N,l}^{j}$$
(15)

$$\xi_{t-N,l+1}^{i} = k_{i,i}\xi_{t-N,l}^{i} + \sum_{j \in \mathcal{N}_{a}^{i}} k_{i,j}\xi_{t-N,l}^{j}$$
(16)

with $I \in \{0, \ldots, L-1\}$

DN

In After L-steps of consensus, the arrival cost (14) uses

$$\tilde{\Pi}_{t-N}^{i} = (P_{t-N,L}^{i})^{-1}$$
(17)

$$\bar{\mathbf{x}}_{t-N}^{i} = (P_{t-N,L}^{i})^{-1} \xi_{t-N,L}^{i}$$
 (18)

onclusion

Introduction	
0000	

L-step information consensus

Penalty function / arrival cost

$$\Gamma_t^i(.) = \|\hat{\mathbf{x}}_{t-N}^i - \bar{\mathbf{x}}_{t-N}^i\|_{(\tilde{\Pi}_{t-N}^i)^{-1}}^2$$
(14)

A priori state estimate and weight matrix obtained with a L-step consensus on information [Battistelli 2018]

Initialization:

- $\begin{aligned} P^{i}_{t-N,0} &= (\Pi^{i}_{t-N})^{-1} & (\text{information matrix}) \\ \xi^{i}_{t-N,0} &= P^{i}_{t-N,0} \hat{x}^{i}_{t-N|t-1} & (\text{information vector}) \end{aligned}$
- $\label{eq:consensus} \textcircled{2} \mbox{ Consensus step: exchanging } P_{t-N,0}^i \mbox{ and } \xi_{t-N,0}^i \mbox{ with neighbors then compute the weighted average.}$

$$P_{t-N,l+1}^{i} = k_{i,i}P_{t-N,l}^{i} + \sum_{j \in \mathcal{N}_{a}^{j}} k_{i,j}P_{t-N,l}^{j}$$
(15)

$$\xi_{t-N,l+1}^{i} = k_{i,i}\xi_{t-N,l}^{i} + \sum_{j \in \mathcal{N}_{a}^{i}} k_{i,j}\xi_{t-N,l}^{j}$$
(16)

with $I \in \{0, \ldots, L-1\}$

In After L-steps of consensus, the arrival cost (14) uses

$$\tilde{\Pi}_{t-N}^{i} = (P_{t-N,L}^{i})^{-1}$$
(17)

$$\bar{\mathbf{x}}_{t-N}^{i} = (P_{t-N,L}^{i})^{-1} \xi_{t-N,L}^{i}$$
 (18)

• Advantages: allow to broadcast information deeper and take into account the confidence of each agent on each component of the state.

troduction	Distributed State Estimation for cooperative localization	DMHE approach for cooperative localization	Simulation results	Conclusion
000	0000	0000	00	

Observability rank-based weights technique

• Observability rank-based weights $k_{i,j}$ in consensus steps \rightarrow extension of [Venturino et al. 2022] to the nonlinear case

Regional observability matrix of agent *i* over the estimation window [t - N, t]

$$\bar{\mathcal{O}}_{N,t}^{i} = \left[(\bar{\mathcal{C}}_{t-N}^{i})^{\top} \quad (\bar{\mathcal{C}}_{t-N+1}^{i} \mathbf{A})^{\top} \quad \cdots \quad (\bar{\mathcal{C}}_{t}^{i} \mathbf{A}^{N})^{\top} \right]^{\top}, \quad \text{with } \bar{\mathcal{C}}_{t-N}^{i} = \left. \frac{\partial \bar{h}^{i}}{\partial \mathbf{x}} \right|_{\mathbf{\hat{x}}_{t-N}^{i}}$$
(19)

• $\rho_{\mathcal{O}}^i$: reliability of agent *i*, exchanged with neighbors

 $\rho_{\mathcal{O}}^{i} = \operatorname{rank}(\bar{\mathcal{O}}_{N,t}^{i})$ (20)

$$k_{i,j} = \frac{\rho_{\mathcal{O}}^{i}}{\sum_{l \in \mathcal{N}_{a}^{i}} \rho_{\mathcal{O}}^{l}}.$$
 (21)

• $k_{i,j}$: ratio of $\rho_{\mathcal{O}}^i$ averaged among the neighbors $i \in \mathcal{N}_a^i$

> < = > = = < < <

roduction	Distributed State Estimation for cooperative localization	DMHE approach for cooperative localization	Simulation results	Conclusion
000	0000	0000	00	

Observability rank-based weights technique

• Observability rank-based weights $k_{i,i}$ in consensus steps \rightarrow extension of [Venturino et al. 2022] to the nonlinear case

Regional observability matrix of agent i over the estimation window [t - N, t]

$$\bar{\mathcal{O}}_{N,t}^{i} = \left[(\bar{\mathcal{C}}_{t-N}^{i})^{\top} \quad (\bar{\mathcal{C}}_{t-N+1}^{i} \mathbf{A})^{\top} \quad \cdots \quad (\bar{\mathcal{C}}_{t}^{i} \mathbf{A}^{N})^{\top} \right]^{\top}, \quad \text{with } \bar{\mathcal{C}}_{t-N}^{i} = \left. \frac{\partial \bar{h}^{i}}{\partial \mathbf{x}} \right|_{\hat{\mathbf{x}}_{t-N}^{i}}$$
(19)

• $\rho_{\mathcal{O}}^i$: reliability of agent *i*, exchanged with neighbors

- (20)
- $ho_{\mathcal{O}}^{i} = \operatorname{rank}(ar{\mathcal{O}}_{N,t}^{i})$ $ho_{N,t}^{i} = rac{
 ho_{\mathcal{O}}^{j}}{\sum_{l \in \mathcal{N}^{i}}
 ho_{\mathcal{O}}^{l}}.$ (21)

くロット (日) くちゃ くちゃ (日) シタク

- $k_{i,i}$: ratio of $\rho_{\mathcal{O}}^i$ averaged among the neighbors $i \in \mathcal{N}_2^i$
- Method suitable for distributed schemes \rightarrow mitigate unobservability issues

Distributed State Estimation for cooperative localization $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

DMHE approach for cooperative localization $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Simulation cooperative localization of an UAVs fleet

Assumptions:

- Communication network: undirected time-invariant connected graph
- No communication failure

Considered system:

- Fleet of $n_a = 3$ UAVs
- Linear dynamics
- Non linear measurements (distance between neighbors UAVs and speed norm)

Fig. 7: Communication graph and distance measurement capabilities between the three UAVs

EL OQA

• • = •

.

Results on the constrained cooperative localization of an UAVs fleet

Comparison

- DMHE-pre-EKF: our proposed DMHE approach with EKF pre-estimation
- DMHE-1: standard DMHE algorithm [Battistelli 2018] (without pre-estimation) extended to nonlinear measurements
- DEKF-CI: consensus-based on information distributed EKF of [Battistelli et al. 2015]
- **DMHE-pre-EKF-2-step**: our DMHE-pre-EKF observer with 2-step consensus (i.e., L = 2)

	RMSE	RMSE final values	au (s)
DEKF-CI	2.7651	0.7059	0.0004
DMHE-1	1.6371	0.6906	0.4946
DMHE-pre-EKF	1.7009	0.6104	0.0413
DMHE-pre-EKF-2-step	1.6709	0.5980	0.0433

Tab. 1: Comparative results of the different estimation techniques

Concluding remarks

- Contribution: DMHE algorithm with EKF-based pre-estimation for constrained cooperative localization of a Multi-Agent System with nonlinear measurements.
- Simulation results confirm the interest of the proposed method: constraints handling, reducing computation load, preserving estimation accuracy (compared to standard DMHE).

Associated paper

• M. Borelle, S. Bertrand, C. Stoica, T. Alamo, E.F. Camacho, "Cooperative localization of an UAV fleet using distributed MHE with EKF pre-Estimation and nonlinear measurements", 27th International Conference on System Theory, Control and Computing, Timisoara, Romania, 2023.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のの⊙

Concluding remarks

- Contribution: DMHE algorithm with EKF-based pre-estimation for constrained cooperative localization of a Multi-Agent System with nonlinear measurements.
- Simulation results confirm the interest of the proposed method: constraints handling, reducing computation load, preserving estimation accuracy (compared to standard DMHE).

Associated paper

 M. Borelle, S. Bertrand, C. Stoica, T. Alamo, E.F. Camacho, "Cooperative localization of an UAV fleet using distributed MHE with EKF pre-Estimation and nonlinear measurements", 27th International Conference on System Theory, Control and Computing, Timisoara, Romania, 2023.

Current work

 Practical implementation of the proposed approach on a real MAS composed of UAVs, UGVs (flight arena of CentraleSupélec).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のの⊙

Thanks for your attention !

Questions ?

matthieu.borelle@centralesupelec.fr

Distributed MHE with pre-estimation using EKF for Nonlinear Measurements

Borelle M - 11/16/2023 1/7

▲ Ξ ▶

315

Sac

Bibliography

- Battistelli, G. (2018). "Distributed moving-horizon estimation with arrival-cost consensus". In: IEEE Transactions on Automatic Control 64.8, pp. 3316–3323.
- Battistelli, G., L. Chisci, G. Mugnai, A. Farina, and A. Graziano (2015). "Consensus-Based Linear and Nonlinear Filtering". In: *IEEE Transactions on Automatic Control* 60.5, pp. 1410–1415. DOI: 10.1109/TAC.2014.2357135.
- Farina, M., G. Ferrari-Trecate, and R. Scattolini (2010). "Distributed moving horizon estimation for linear constrained systems". In: *IEEE Transactions on Automatic Control* 55.11, pp. 2462–2475.
- Rao, C.V., J.B. Rawlings, and D.Q. Mayne (2003). "Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations". In: IEEE Transactions on Automatic Control 48.2, pp. 246–258. DOI: 10.1109/TAC.2002.808470.
- Venturino, A., S. Bertrand, C. Stoica Maniu, T. Alamo, and E. F Camacho (2020). "Distributed moving horizon estimation with pre-estimating observer". In: 24th International Conference on System Theory, Control and Computing, pp. 174–179.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のの⊙

List of References

- Venturino, A., S. Bertrand, C. Stoica Maniu, T. Alamo, and E. F. Camacho (2022). "Multi-Vehicle System Localization by Distributed Moving Horizon Estimation over a Sensor Network with Sporadic Measurements". In: *IEEE Conference on Control Technology and Applications*, pp. 595–600.
 Venturino, A., C. Stoica Maniu, S. Bertrand, T. Alamo, and E. F Camacho (2021). "Distributed moving horizon state estimation for sensor networks with low computation capabilities". In: *System*
 - Theory, Control and Computing Journal 1.1, pp. 81–87.

Prior Π^i weight update

- The arrival cost is designed to approximate the untractable full information problem (that processes all the information from initial time).
- When the system is non-linear and constrained, an algebraic update expression for the arrival cost rarely exists.
 → approximate the arrival cost for the constrained problem with the one of the unconstrained problem [Rao et al. 2003].

Thus, the positive definite matrix Π_{t-N+1}^{i} is obtained from the matrix $\tilde{\Pi}_{t-N}^{i}$ using the discrete-time Riccati equation associated to an Extended Kalman filter (as in [Rao et al. 2003] for the centralized case):

$$\Pi_{t-N+1|t-N}^{i} = \boldsymbol{A} \tilde{\Pi}_{t-N}^{i} \boldsymbol{A}^{\top} + \boldsymbol{B} \boldsymbol{Q}^{i} \boldsymbol{B}^{\top}$$
(22)

$$\Pi_{t-N+1}^{i} = \Pi_{t-N+1|t-N}^{i} - \Pi_{t-N+1|t-N}^{i} (\bar{C}_{t-N+1}^{i})^{\top} (\bar{C}_{t-N+1}^{i} \Pi_{t-N+1|t-N}^{i} (\bar{C}_{t-N+1}^{i})^{\top} + \bar{R}^{i})^{-1} \bar{C}_{t-N+1}^{i} \Pi_{t-N+1|t-N}^{i}$$
(23)
with $\boldsymbol{Q}^{i} = \operatorname{diag}(Q^{1}, \dots, Q^{n_{a}})$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のの⊙

EKF pre-estimation observer

For $k \in \{t - N, ..., t\}$, the matrix gain K_k^i is computed using the classical EKF observer update. The step t - N consists of initializing the pre-estimation error covariance matrix $\prod_{pre,t-N|t-N}^i = \tilde{\prod}_{t-N}^i$. Then, for $k \in \{t - N + 1, ..., t\}$, the prediction of the covariance evolution is performed as follows:

$$\Pi_{pre,k|k-1}^{i} = \boldsymbol{A} \Pi_{pre,k-1|k-1}^{i} \boldsymbol{A}^{\top} + \boldsymbol{B} \boldsymbol{Q}^{i} \boldsymbol{B}^{\top}$$
(24)

avec $\prod_{pre,k|k-1}^{i}$ the a priori estimation matrix of covariance of the estimation error at time k. The optimal Kalman gain (10) is computed as follows:

$$K_{k}^{i} = \Pi_{pre,k|k-1}^{i} (\bar{C}_{k}^{i})^{\top} (S_{k}^{i})^{-1}$$
(25)

with the pre-estimation error covariance matrix:

$$\Pi^{i}_{pre,k|k} = (I_{n_{x}} - K^{i}_{k} \ \bar{C}^{i}_{k}) \Pi^{i}_{pre,k|k-1}$$
(26)

and S_{ν}^{i} the innovation covariance:

$$S_k^i = \bar{C}_k^i \Pi_{\text{pre},k|k-1}^i (\bar{C}_k^i)^\top + \bar{R}^i$$
⁽²⁷⁾

Remark: to ensure robustness of the estimation, taking into account the uncertainties on the input measurement of the other agents, we artificially increase the corresponding diagonal element of Q^i .

Proposed DMHE with EKF pre-estimation algorithm

Algorithm 1 DMHE with pre-estimation procedure Part 1

```
1: Initialization: \forall i \in \mathcal{N}_a, at the first time step t = 0
 2:
           initialize \Pi_0^i, \hat{\mathbf{x}}_0^i
           collect a first local measurement y_0^i and the knowledge on the initial collective input \hat{u}_0^i
 3:
           receive from the neighborhood j \in \mathcal{N}_{2}^{i} their measurements y_{0}^{j}
 4:
      Online: \forall i \in \mathcal{N}_{a}, \forall t > 0
 5:
            collect the local measurement y_t^i and the knowledge on the collective input \hat{u}_t^i using (4) and (3)
 6:
 7:
8:
9:
            receive from the neighbors j \in \mathcal{N}_a^j the collected measurements in the step 6, form and store \bar{y}_i^j
           if 1 \leq t \leq N then
                set the horizon length N_w = t
10:
           else
11:
                set the horizon length N_w = N
12:
           end if
            compute \mathcal{O}_{N_{w,t}}^{i} and \rho_{\mathcal{O}}^{i} according to (19) and (20)
13:
           exchange \rho_{\mathcal{O}}^{j} with j \in \mathcal{N}_{a}^{i}
14:
15:
            compute the k_{ii} components according to (21)
```

16: perform L steps of the consensus algorithms (16) with the initialization to get $\tilde{\Pi}_{t-N_w}^i$ and $\bar{x}_{t-N_w}^i$ (17)-(18)

Proposed DMHE with EKF pre-estimation algorithm

Algorithm 2 DMHE with pre-estimation procedure Part 2

- 17: solve the local optimization problem of DMHE with EKF pre-estimation, minimizing $J_{N_{W}}^{i}$ as in (13) and (14) subject to the constraints (10)-(12)
- 18: store the solution $\hat{\mathbf{x}}_{t-N_w|t}^i$, $\hat{\mathbf{x}}_{t-N_w+1|t}^j$ and the corresponding estimate $\hat{\mathbf{x}}_{t|t}^i$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のの⊙