

Nonlinear MPC for collisionavoidance trajectory tracking of the multi-UAV system in a mapping mission

Dora Novak, Sihem Tebbani

Journée du CT CPNL - 16/11/2023

SUMMARY

1. Context

- 2. Mission planning for mapping
- 3. Prioritized trajectory tracking
- 4. Distributed NMPC strategies for trajectory tracking with collision avoidance
- 5. Robustness assessment
- 6. Conclusion and perspectives

1. Context

Guarting UAVs for mapping tasks in agriculture

- Growing potential of unmanned aerial vehicles (UAVs) in smart agriculture
 - Farming management optimization
 - Increased agricultural productivity
- Multi-UAV system for **remote sensing of the crops mapping**
 - Increased mission efficiency
 - Reduced mapping duration
- Mapping mission consists of:
 - 1. Mission planning
 - 2. Trajectory tracking

2. Mission planning for mapping

Mission planning for a multi-UAV system

- Mission planning implies:
 - Area decomposition considering field shape, UAV and camera characteristics

	•	٠	•	٠	٠	٠	•	٠	٠	٠	٠
10 -	•	٠	•	•	•	•	•	•	•	٠	٠
	•	•	•	٠	٠	•	•	•	٠	•	•
8 -	•	•	•	•	•	•	•	•	٠	•	•
	•	•	•	•	•	•	•	•	•	•	•
6 -	•	•	٠	•	•	٠	٠	•	٠	٠	٠
	•	•	•	•	•	•	•	•	•	•	•
4 -	•	•	•	٠	٠	•	•	•	٠	•	•
	•	•	•	•	•	•	•	•	•	•	•
2 -	•	•	•	٠	•	•	•	•	٠	•	•
	•	•	•	•	•	•	•	•	•	•	•
		2		4		6		8		10	

Mission planning for a multi-UAV system

- Mission planning implies:
 - Area decomposition considering field shape, UAV and camera characteristics
 - Task allocation distribution of the waypoints

Mission planning for a multi-UAV system

- Mission planning implies:
 - Area decomposition considering field shape, UAV and camera characteristics
 - Task allocation distribution of the waypoints
 - Energy management battery replacement strategy

Example of path planning optimization for battery management

S Multi-UAV mapping mission

- Challenges:
 - Energy-aware mission
 - battery usage
 - safe return-to-base in case of insufficient energy
 - Cooperative multi-UAV system
 - Task distribution and allocation
 - Collision avoidance

Example of path planning optimization for battery management

3. Prioritized trajectory tracking

- Suitable control strategy:
 - Minimizes tracking error
 - Robust against disturbances
- Challenges:
 - Often irregular shape of the field → nonlinear optimal trajectory
 - Multi-UAV system → coordination, collision avoidance
- Promising results: Model predictive control (MPC)
 - Ability to handle constraints
 - Multi-UAV system → distributed approach

Substitution of the second state of the sec

- Multi-UAV mission
- Defined 3D reference trajectory for each UAV
- Objective:
 - Track the reference trajectory for each UAV while avoiding collision
- Approach:
 - **Distributed nonlinear MPC** with full information exchange between UAVs

S Prioritized trajectory tracking

Passing priority allocation - Predetermined hierarchy depending on

defined criteria \rightarrow flight duration, battery level, etc.

- UAV with the higher-passing priority
 - Classical NMPC reference trajectory tracking
- UAV with lower-passing priority
 - NMPC with collision avoidance
- \rightarrow Redundant maneuvers elimination
- \rightarrow Minimize the path alterations for the leading UAV
- Optimal control problem with reduced computational complexity

4. Distributed NMPC strategies for trajectory tracking with collision avoidance

Oistributed NMPC for collision avoidance

• Control architecture for each UAV:

* Lindqvist, B., Mansouri, S., Agha-mohammadi, A. A., Nikolakopoulos, G., Nonlinear MPC for collision avoidance and control of UAVs with dynamic obstacles. IEEE robot. Autom. Lett., 5(4), 2020.

Oistributed NMPC for collision avoidance

• Prioritized tracking with collision avoidance for a 2-UAV system

Oistributed NMPC for collision avoidance

- Prioritized tracking with collision avoidance for a 2-UAV system
 - UAV 2 <u>higher</u> passing priority
 - Classical NMPC
 - UAV 1 <u>lower</u> passing priority
 - NMPC with collision avoidance:
 - 1. As a nonlinear constraint
 - 2. In the **cost function**
 - 3. Through a **flight corridor**

Cost function:

Subject to: $u \in \mathcal{U}$

:	set of UAVs in the system
:	weighting matrices for the UAV <i>i</i>
:	predicted output of the UAV <i>i</i>
:	reference output of the UAV <i>i</i>
:	change in successive control inputs of the UAV i
	::

Collision avoidance as a nonlinear constraint

Solution 2. Collision avoidance in the cost function

Subject to: $u \in U$

N _i	:	set of UAVs in the system	
Q_i, R_i, G_{ij}	:	weighting matrices for the UAV i	
$\hat{\mathcal{Y}}_{k+n}^{i}$:	predicted output of the UAV <i>i</i>	
$y_{k+n}^{i,ref}$:	reference output of the UAV <i>i</i>	
Δu_{k+n-1}^i	:	change in successive control inputs of the UAV i	
A_{ij}	:	2 nd criterion weight, can take the value in the interval [0),1]
$d_{ij,k+n}$:	distance between the position of the UAV i and UAV j	
d_s	:	safety distance	20

Solution 2. Collision avoidance in the cost function

- $A_{ij} \in [0,1]$
 - Determines how strongly must the UAV avoid its neighbour
 - Depends on the distance between the two UAVs:

Gold Straight Constraints of the second straints of the second strai

5. Robustness assessment

System dynamics - UAV model [1]

States, controls and outputs: $\mathbf{x} = [p, v, \varphi, \theta]^T$, $\mathbf{u} = [T, \varphi_{ref}, \theta_{ref}]^T$, $\mathbf{y} = [p, v]^T$

- 8 state variables: •
 - Position: $p = [x_c, y_c, z_c]^T$ • Velocities: $v = [\dot{x}_c, \dot{y}_c, \dot{z}_c]^T$
 - •
 - *Roll and pitch*: φ,θ
 - Yaw angle is set to zero, ψ =0 [1] •
- *3 control inputs:* •
 - Thrust: Т
 - Reference roll and pitch: φ_{ref} , θ_{ref}
- 6 output variables: •
 - Position: •
 - $p = [x_c, y_c, z_c]^T$ $v = [\dot{x}_c, \dot{y}_c, \dot{z}_c]^T$ Velocities: •

[1] Lindgvist, B., Mansouri, S., Agha-mohammadi, A. A., Nikolakopoulos, G., Nonlinear MPC for collision avoidance and control of UAVs with dynamic obstacles. IEEE robot. Autom. Lett., 5(4), 2020.

System dynamics - UAV model [1]

• Dynamical nonlinear model of a quadrotor:

•
$$\dot{p}(t) = v(t)$$

• $\dot{v}(t) = R \begin{bmatrix} 0\\0\\\alpha T \end{bmatrix} + \begin{bmatrix} 0\\0\\-g \end{bmatrix} - \begin{bmatrix} A_x & 0 & 0\\0 & A_y & 0\\0 & 0 & A_z \end{bmatrix} v(t) + \begin{bmatrix} W_x\\W_y\\W_z \end{bmatrix}$

$$A_x, A_y, A_z: \text{ linear damping terms}$$

$$K_{\varphi}, K_{\theta}: \text{ gains (inner-loop control)}$$

$$\tau_{\varphi}, \tau_{\theta}: \text{ time constants}$$

•
$$\dot{\varphi}(t) = (K_{\varphi}\varphi_{ref}(t) - \varphi(t))/\tau_{\varphi}$$

•
$$\dot{\theta}(t) = (K_{\theta}\theta_{ref}(t) - \theta(t))/\tau_{\theta}$$

Rotational matrix:
$$(\psi = 0)$$

$$R = \begin{bmatrix} c\theta c\psi & s\varphi s\theta c\psi - c\varphi s\psi & c\varphi s\theta c\psi + s\varphi s\psi \\ c\theta s\psi & s\varphi s\theta s\psi + c\varphi c\psi & c\varphi s\theta s\psi - s\varphi c\psi \\ -s\theta & s\varphi c\theta & c\varphi c\theta \end{bmatrix}$$

[1] Lindqvist, B., Mansouri, S., Agha-mohammadi, A. A., Nikolakopoulos, G., Nonlinear MPC for collision avoidance and control of UAVs with dynamic obstacles. IEEE robot. Autom. Lett., 5(4), 2020.

System dynamics - UAV model [1]

• Dynamical nonlinear model of a quadrotor:

•
$$\dot{p}(t) = v(t)$$

• $\dot{v}(t) = R\begin{bmatrix} 0\\0\\-g\end{bmatrix} + \begin{bmatrix} 0\\0\\-g\end{bmatrix} - \begin{bmatrix} A_x & 0 & 0\\0 & A_y & 0\\0 & 0 & A_z\end{bmatrix} v(t) + \begin{bmatrix} w_x\\w_y\\w_z\end{bmatrix}$
 k_{φ}, K_{θ} : linear damping terms
 K_{φ}, K_{θ} : gains (inner-loop control)
 $\tau_{\varphi}, \tau_{\theta}$: time constants

•
$$\dot{\varphi}(t) = (K_{\varphi}\varphi_{ref}(t) - \varphi(t))/\tau_{\varphi}$$

•
$$\dot{\theta}(t) = (K_{\theta}\theta_{ref}(t) - \theta(t))/\tau_{\theta}$$

Rotational matrix:
$$(\psi = 0)$$

$$R = \begin{bmatrix} c\theta c\psi & s\varphi s\theta c\psi - c\varphi s\psi & c\varphi s\theta c\psi + s\varphi s\psi \\ c\theta s\psi & s\varphi s\theta s\psi + c\varphi c\psi & c\varphi s\theta s\psi - s\varphi c\psi \\ -s\theta & s\varphi c\theta & c\varphi c\theta \end{bmatrix}$$

[1] Lindqvist, B., Mansouri, S., Agha-mohammadi, A. A., Nikolakopoulos, G., Nonlinear MPC for collision avoidance and control of UAVs with dynamic obstacles. IEEE robot. Autom. Lett., 5(4), 2020.

Mapping mission simulations - reference paths

Waypoint	UAV1	UAV2
start	(0,0,0)m	(0.5, 0.5, 0)m
1	(1,0,3)m	(1,3,3)m
2	(2,0,3)m	(2,3,3)m
3	(3,0,3)m	(3,3,3)m
4	(3,1,3)m	(3,2,3)m
5	(2,1,3)m	(2,2,3)m
6	(1,1,3)m	(1,2,3)m
finish	(0,0,0)m	(0, 0.5, 0)m

0

CentraleSupélec **PARIS-SACLAY**

Robustness assessment

- Random constant external disturbances $[w_x, w_y, w_z]$
- Random uncertainty of the thruster efficiency parameter α
- Safety distance $d_s = 0.55 m$; Security factor S = 10%
- Corridor width $\beta = 0.3 m$
- Solving the optimization problem: fmincon (Matlab)

Minimum distance between UAVs

CentraleSupélec UNIVERSITÉ

Average CPU

Root Mean Square Error

The worst case

The worst case – test case 4

Good tracking performance – test case 25

- Flight corridor results in the lowest RMSE
 - the highest precision, while compromising the safety distance
- Collision avoidance as a nonlinear constraint and as a penalty cost
 - Respecting the safety distance with increased CPU time

• What if the planned paths intersect?

• Nonlinear constraint - successful collision avoidance without further deviations

• Nonlinear constraint - successful collision avoidance without further deviations

6. Conclusion and perspectives

Prioritized multi-UAV trajectory tracking with collision avoidance

- 3 distributed NMPC strategies:
 - 1. Collision avoidance as a nonlinear constraint
 - 2. Collision avoidance in the cost function
 - 3. Collision avoidance through a <u>flight corridor</u>
- The best trade-off between the performance and computational burden
 - → Flight corridor
 - UAV remains inside the corridor despite the uncertainties and disturbances
 - Safety distance not respected → corridor design depends on the path configuration and UAV characteristics

• Suitable for scenarios without intersection of the planned paths

- Mission planning:
 - Planning from the battery perspective (ongoing work)
 - Online mission replanning
 - UAV failure
 - Insufficient battery level for mission completion
- Trajectory tracking:
 - Study of a multi-UAV mission
 - Online priority allocation
- Experimental validation

THANK YOU!